Innervation is required for sense organ development in the lateral line system of adult zebrafish.

نویسندگان

  • Hironori Wada
  • Christine Dambly-Chaudière
  • Koichi Kawakami
  • Alain Ghysen
چکیده

Superficial mechanosensory organs (neuromasts) distributed over the head and body of fishes and amphibians form the "lateral line" system. During zebrafish adulthood, each neuromast of the body (posterior lateral line system, or PLL) produces "accessory" neuromasts that remain tightly clustered, thereby increasing the total number of PLL neuromasts by a factor of more than 10. This expansion is achieved by a budding process and is accompanied by branches of the afferent nerve that innervates the founder neuromast. Here we show that innervation is essential for the budding process, in complete contrast with the development of the embryonic PLL, where innervation is entirely dispensable. To obtain insight into the molecular mechanisms that underlie the budding process, we focused on the terminal system that develops at the posterior tip of the body and on the caudal fin. In this subset of PLL neuromasts, bud neuromasts form in a reproducible sequence over a few days, much faster than for other PLL neuromasts. We show that wingless/int (Wnt) signaling takes place during, and is required for, the budding process. We also show that the Wnt activator R-spondin is expressed by the axons that innervate budding neuromasts. We propose that the axon triggers Wnt signaling, which itself is involved in the proliferative phase that leads to bud formation. Finally, we show that innervation is required not only for budding, but also for long-term maintenance of all PLL neuromasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projections of the Diencephalospinal Dopaminergic System to Peripheral Sense Organs in Larval Zebrafish (Danio rerio)

Dopaminergic neurons of the descending diencephalospinal system are located in the posterior tuberculum (PT) in zebrafish (Danio rerio), and correspond in mammals to the A11 group in hypothalamus and thalamus. In the larval zebrafish, they are likely the only source of central dopaminergic projections to the periphery. Here, we characterized posterior tubercular dopaminergic fibers projecting t...

متن کامل

Development of the zebrafish lateral line.

The lateral line system is simple (comprising six cell types), its sense organs form according to a defined and reproducible pattern, and its neurons are easily visualized. In the zebrafish, these advantages can be combined with a wealth of genetic tools, making this system ideally suited to a combined molecular, cellular and genetic analysis. Recent progress has taken advantage of these variou...

متن کامل

Towing the line

Fish receive much of their sensory information — used, for example, to guide their stunning schooling behaviour — from a particular sensory organ system, the lateral line. Hair cells sitting in neuromast organs that are scattered along the flank of the fish sense water movements, much as hair cells in our inner ear sense air movements. The lateral line provides the fish with information about m...

متن کامل

Neuronal differences prefigure somatotopy in the zebrafish lateral line.

The central projection of the fish lateral line displays somatotopic ordering. In order to know when and how this ordering is established, we have labelled single sensory neurones and followed the growth of their neurites. We show that the neuromast cells and the corresponding neurones are not related by a fixed lineage, and also that somatotopic differences between anterior and posterior line ...

متن کامل

Signaling Pathways Regulating Zebrafish Lateral Line Development

The lateral line organ is a mechanosensory organ of fish and amphibians that detects changes in water flow. The lateral line organ of zebrafish has been used as a model for cell polarity and collective cell migration as well as hair cell loss and regeneration. A combination of genetic tools and live imaging has allowed dissection of signaling pathways that regulate these processes. Here, we sum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 14  شماره 

صفحات  -

تاریخ انتشار 2013